接上一篇文章,话不多说直接开始

一、打开我们创建的工程文件,先就建立一个文件夹用来存放我们写的子文件(不建立也行),然后建立pid.h,pid.c存入我们建立的文件夹中,并把它的源文件和头文件添加进去,最后记得编译一下。

二、遥控器部分

先在main.h 中定义一个遥控器接收数据的结构体,参考了官方的定义不过我删了一部分不需要的。

typedef struct

{

struct

{

signed short ch0;

signed short ch1;

signed short ch2;

signed short ch3;

unsigned char s1;

unsigned char s2;

unsigned short sw;

}rc;

}DBUS;

在main函数里初始化和中断使能DMA,注意这里我们是用了串口1来接收数据的

HAL_UART_Receive_DMA(&huart1,dbus_resive,18);//初始化DMA

__HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//中断使能DMA

遥控接收到的数据需要进行拼接一下,如果大家不懂可以参考一下这位大佬下的这篇博客(https://blog.csdn.net/weixin_45850927/article/details/121299686)

uint8_t dbus_resive[18]; //用来储存接收到的数据的数组

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)

{

remoter.rc.ch0 = (dbus_resive[0]| (dbus_resive[1] << 8)) & 0x07ff;

remoter.rc.ch0 -= 1024;

remoter.rc.ch1 = ((dbus_resive[1] >> 3) | (dbus_resive[2] << 5)) & 0x07ff;

remoter.rc.ch1 -= 1024;

remoter.rc.ch2 = ((dbus_resive[2] >> 6) | (dbus_resive[3] << 2) | (dbus_resive[4] << 10)) & 0x07ff;

remoter.rc.ch2 -= 1024;

remoter.rc.ch3 = ((dbus_resive[4] >> 1) | (dbus_resive[5] << 7)) & 0x07ff;

remoter.rc.ch3 -= 1024;

remoter.rc.s1 = ((dbus_resive[5] >> 4)& 0x000C) >> 2;

remoter.rc.s2 = ((dbus_resive[5] >> 4)& 0x0003);

remoter.rc.sw = dbus_resive[16]|(dbus_resive[17]<<8);

}

经过处理后我们接收到四个通道的数据范围是(-660~660)

三,PID部分(PID其实网上资料有很多,这里就不详细介绍,直接贴代码,我用的是最简单的【笑哭】)

#ifndef __PID_H__

#define __PID_H__

#include "stdint.h"

typedef float fp32;

enum PID_MODE

{

PID_POSITION = 0,

PID_DELTA

};

typedef struct

{

uint8_t mode;

//PID 三参数

fp32 Kp;

fp32 Ki;

fp32 Kd;

fp32 max_out; //最大输出

fp32 max_iout; //最大积分输出

fp32 set;

fp32 fdb;

fp32 out;

fp32 Pout;

fp32 Iout;

fp32 Dout;

fp32 Dbuf[3]; //微分项 0最新 1上一次 2上上次

fp32 error[3]; //误差项 0最新 1上一次 2上上次

} PidTypeDef;

fp32 PID_Calc(PidTypeDef *pid,fp32 ref,fp32 set);

void PID_init(PidTypeDef *pid,uint8_t mode,const fp32 PID[3],fp32 max_out,fp32 max_iout);

#endif

#include "pid.h"

#include "main.h"

#define LimitMax(input, max) \

{ \

if (input > max) \

{ \

input = max; \

} \

else if (input < -max) \

{ \

input = -max; \

} \

}

void PID_init(PidTypeDef *pid,uint8_t mode,const fp32 PID[3],fp32 max_out,fp32 max_iout)

{

if(pid==NULL||PID==NULL)

{

return;

}

pid->mode=mode;

pid->Kp=PID[0];

pid->Ki=PID[1];

pid->Kd=PID[2];

pid->max_out=max_out;

pid->max_iout=max_iout;

pid->Dbuf[0]=pid->Dbuf[1]=pid->Dbuf[2]=0.0f;

pid->error[0]=pid->error[1]=pid->error[2]=pid->Pout=pid->Iout=pid->Dout=pid->out=0.0f;

}

fp32 PID_Calc(PidTypeDef *pid, fp32 ref, fp32 set)

{

if (pid == NULL)

{

return 0.0f;

}

pid->error[2] = pid->error[1];

pid->error[1] = pid->error[0];

pid->set = set;

pid->fdb = ref;

pid->error[0] = set - ref;

if (pid->mode == PID_POSITION)

{

pid->Pout = pid->Kp * pid->error[0];

pid->Iout += pid->Ki * pid->error[0];

pid->Dbuf[2] = pid->Dbuf[1];

pid->Dbuf[1] = pid->Dbuf[0];

pid->Dbuf[0] = (pid->error[0] - pid->error[1]);

pid->Dout = pid->Kd * pid->Dbuf[0];

LimitMax(pid->Iout, pid->max_iout);

pid->out = pid->Pout + pid->Iout + pid->Dout;

LimitMax(pid->out, pid->max_out);

}

else if (pid->mode == PID_DELTA)

{

pid->Pout = pid->Kp * (pid->error[0] - pid->error[1]);

pid->Iout = pid->Ki * pid->error[0];

pid->Dbuf[2] = pid->Dbuf[1];

pid->Dbuf[1] = pid->Dbuf[0];

pid->Dbuf[0] = (pid->error[0] - 2.0f * pid->error[1] + pid->error[2]);

pid->Dout = pid->Kd * pid->Dbuf[0];

pid->out += pid->Pout + pid->Iout + pid->Dout;

LimitMax(pid->out, pid->max_out);

}

return pid->out;

}

四,电机部分(因为我们只需要简单控个电机,所以就只需要在main.h中定义一些我们需要的就可以了)

typedef enum

{

CAN_CHASSIS_ALL_ID = 0x200,

CAN_AUXILIARY_ALL_ID = 0x1FF,

motor1 = 0x201,

motor2 = 0x202,

motor3 = 0x203,

motor4 = 0x204,

}can_msg_id;

typedef struct

{

uint16_t angle_value;

int16_t speed_rpm;

int16_t real_current;

uint8_t temperate;

int16_t real_angle;

}motor_measure_t;

五,CAN

CAN基础的配置CUBEMX已经配置好了

配置CAN的过滤器

void can_filter_init(void)

{

CAN_FilterTypeDef can_filter_st;

can_filter_st.FilterActivation = ENABLE;

can_filter_st.FilterMode = CAN_FILTERMODE_IDMASK;

can_filter_st.FilterScale = CAN_FILTERSCALE_32BIT;

can_filter_st.FilterIdHigh = 0x0000;

can_filter_st.FilterIdLow = 0x0000;

can_filter_st.FilterMaskIdHigh = 0x0000;

can_filter_st.FilterMaskIdLow = 0x0000;

can_filter_st.FilterBank = 0;

can_filter_st.FilterFIFOAssignment = CAN_RX_FIFO0;

HAL_CAN_ConfigFilter(&hcan1, &can_filter_st);

}

如果不太清楚可以参考一下这位大佬写的(https://blog.csdn.net/weixin_44663976/article/details/126138298)

配置完过滤器就可以开启CAN的使用了(这两步很重要,不要漏了)

HAL_CAN_Start(&hcan1);//启动CAN1

HAL_CAN_ActivateNotification(&hcan1,CAN_IT_RX_FIFO0_MSG_PENDING);//使能中断

写到一个函数里防漏

void can1_start(void)

{

can_filter_init();

HAL_CAN_Start(&hcan1);//启动CAN1

HAL_CAN_ActivateNotification(&hcan1,CAN_IT_RX_FIFO0_MSG_PENDING);//使能中断

}

要让M3508电机转呢就要给电机发送电流

uint8_t chassis_can_send_data[8]; //用于接收电机的原始数据

CAN_TxHeaderTypeDef chassis_tx_message;

/**

* @brief send control current of motor (0x201, 0x202, 0x203, 0x204)

* @param[in] motor1: (0x201) 3508 motor control current, range [-16384,16384]

* @param[in] motor2: (0x202) 3508 motor control current, range [-16384,16384]

* @param[in] motor3: (0x203) 3508 motor control current, range [-16384,16384]

* @param[in] motor4: (0x204) 3508 motor control current, range [-16384,16384]

* @retval none

*/

void CAN_cmd_chassis(int16_t M1, int16_t M2, int16_t M3, int16_t M4)

{

uint32_t send_mail_box;

chassis_tx_message.StdId=CAN_CHASSIS_ALL_ID;

chassis_tx_message.IDE=CAN_ID_STD;

chassis_tx_message.RTR=CAN_RTR_DATA;

chassis_tx_message.DLC=0x08;

chassis_can_send_data[0]=M1>>8;

chassis_can_send_data[1]=M1;

chassis_can_send_data[2]=M2>>8;

chassis_can_send_data[3]=M2;

chassis_can_send_data[4]=M3>>8;

chassis_can_send_data[5]=M3;

chassis_can_send_data[6]=M4>>8;

chassis_can_send_data[7]=M4;

HAL_CAN_AddTxMessage(&hcan1,&chassis_tx_message,chassis_can_send_data,&send_mail_box);

}

这个函数几乎每个例程里面都有,笔者也是直接拿过来用

CAN接收到数据后就会产生中断,进入中断回调函数,这个函数是需要我们自己编写的,我们需要在这里处理拼接接收到的数据,然后储存起来

uint8_t rx_data[8]; //用于接收电机原始数据

motor_measure_t motor_chassis[4]; //声明一个结构体数组来储存处理后电机的数据

//用来拼接电机数据

#define get_motor_measure(ptr,data)\

{\

(ptr)->angle_value=(uint16_t)((data)[0]<<8|(data)[1]);\

(ptr)->speed_rpm=(uint16_t)((data)[2]<<8|(data)[3]);\

(ptr)->real_current=(uint16_t)((data)[4]<<8|(data)[5]);\

(ptr)->temperate=(data)[6];\

(ptr)->real_angle=(ptr)->angle_value/8192.0f*360.0f;\

}

void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan)

{

CAN_RxHeaderTypeDef rx_header;

HAL_CAN_GetRxMessage(&hcan1, CAN_RX_FIFO0, &rx_header, rx_data);

switch(rx_header.StdId)

{

case motor1:

case motor2:

case motor3:

case motor4:

{

static uint8_t i = 0;

i = rx_header.StdId - motor1;

get_motor_measure(&motor_chassis[i],rx_data);

break;

}

default:

{

break;

}

}

}

六、现在我们可以开始写main函数了(直接上代码)

/* USER CODE BEGIN Header */

/**

******************************************************************************

* @file : main.c

* @brief : Main program body

******************************************************************************

* @attention

*

* Copyright (c) 2023 STMicroelectronics.

* All rights reserved.

*

* This software is licensed under terms that can be found in the LICENSE file

* in the root directory of this software component.

* If no LICENSE file comes with this software, it is provided AS-IS.

*

******************************************************************************

*/

/* USER CODE END Header */

/* Includes ------------------------------------------------------------------*/

#include "main.h"

#include "can.h"

#include "dma.h"

#include "usart.h"

#include "gpio.h"

/* Private includes ----------------------------------------------------------*/

/* USER CODE BEGIN Includes */

#include "pid.h"

/* USER CODE END Includes */

/* Private typedef -----------------------------------------------------------*/

/* USER CODE BEGIN PTD */

#define unit_speed 1000/660.0 //这里改最大速度只需要改前面的1000就可以了

DBUS remoter;

uint8_t dbus_resive[18];

/* USER CODE END PTD */

/* Private define ------------------------------------------------------------*/

/* USER CODE BEGIN PD */

extern motor_measure_t motor_chassis[4];

PidTypeDef motor_pid;

fp32 pid_motor[3]={3.0,0.1,0}; // 这三个参数也是参考了其他大佬的

/* USER CODE END PD */

/* Private macro -------------------------------------------------------------*/

/* USER CODE BEGIN PM */

/* USER CODE END PM */

/* Private variables ---------------------------------------------------------*/

/* USER CODE BEGIN PV */

void HAL_CAN_RxFifo0MsgPendingCallback(CAN_HandleTypeDef *hcan);

void CAN_cmd_chassis(int16_t M1, int16_t M2, int16_t M3, int16_t M4);

fp32 PID_Calc(PidTypeDef *pid,fp32 ref,fp32 set);

/* USER CODE END PV */

/* Private function prototypes -----------------------------------------------*/

void SystemClock_Config(void);

/* USER CODE BEGIN PFP */

/* USER CODE END PFP */

/* Private user code ---------------------------------------------------------*/

/* USER CODE BEGIN 0 */

/* USER CODE END 0 */

/**

* @brief The application entry point.

* @retval int

*/

int main(void)

{

/* USER CODE BEGIN 1 */

signed int set_speed;

/* USER CODE END 1 */

/* MCU Configuration--------------------------------------------------------*/

/* Reset of all peripherals, Initializes the Flash interface and the Systick. */

HAL_Init();

/* USER CODE BEGIN Init */

/* USER CODE END Init */

/* Configure the system clock */

SystemClock_Config();

/* USER CODE BEGIN SysInit */

/* USER CODE END SysInit */

/* Initialize all configured peripherals */

MX_GPIO_Init();

MX_DMA_Init();

MX_CAN1_Init();

MX_USART1_UART_Init();

MX_USART6_UART_Init();

/* USER CODE BEGIN 2 */

HAL_UART_Receive_DMA(&huart1,dbus_resive,18);//初始化DMA

__HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//IDLE 中断使能

can1_start();

PID_init(&motor_pid,PID_POSITION,pid_motor,16000,16000); //PID初始化

/* USER CODE END 2 */

/* Infinite loop */

/* USER CODE BEGIN WHILE */

while (1)

{

/* USER CODE END WHILE */

set_speed = remoter.rc.ch1 * unit_speed;

PID_Calc(&motor_pid,motor_chassis[1].speed_rpm,set_speed);

CAN_cmd_chassis(motor_pid.out,motor_pid.out,motor_pid.out,motor_pid.out);

HAL_Delay(10);

/* USER CODE BEGIN 3 */

}

/* USER CODE END 3 */

}

/**

* @brief System Clock Configuration

* @retval None

*/

void SystemClock_Config(void)

{

RCC_OscInitTypeDef RCC_OscInitStruct = {0};

RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};

/** Configure the main internal regulator output voltage

*/

__HAL_RCC_PWR_CLK_ENABLE();

__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);

/** Initializes the RCC Oscillators according to the specified parameters

* in the RCC_OscInitTypeDef structure.

*/

RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;

RCC_OscInitStruct.HSEState = RCC_HSE_ON;

RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;

RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;

RCC_OscInitStruct.PLL.PLLM = 6;

RCC_OscInitStruct.PLL.PLLN = 168;

RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2;

RCC_OscInitStruct.PLL.PLLQ = 4;

if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK)

{

Error_Handler();

}

/** Initializes the CPU, AHB and APB buses clocks

*/

RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK|RCC_CLOCKTYPE_SYSCLK

|RCC_CLOCKTYPE_PCLK1|RCC_CLOCKTYPE_PCLK2;

RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;

RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1;

RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV4;

RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV2;

if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_5) != HAL_OK)

{

Error_Handler();

}

}

/* USER CODE BEGIN 4 */

void HAL_UART_RxCpltCallback(UART_HandleTypeDef *UartHandle)

{

remoter.rc.ch0 = (dbus_resive[0]| (dbus_resive[1] << 8)) & 0x07ff;

remoter.rc.ch0 -= 1024;

remoter.rc.ch1 = ((dbus_resive[1] >> 3) | (dbus_resive[2] << 5)) & 0x07ff;

remoter.rc.ch1 -= 1024;

remoter.rc.ch2 = ((dbus_resive[2] >> 6) | (dbus_resive[3] << 2) | (dbus_resive[4] << 10)) & 0x07ff;

remoter.rc.ch2 -= 1024;

remoter.rc.ch3 = ((dbus_resive[4] >> 1) | (dbus_resive[5] << 7)) & 0x07ff;

remoter.rc.ch3 -= 1024;

remoter.rc.s1 = ((dbus_resive[5] >> 4)& 0x000C) >> 2;

remoter.rc.s2 = ((dbus_resive[5] >> 4)& 0x0003);

remoter.rc.sw = dbus_resive[16]|(dbus_resive[17]<<8);

}

/* USER CODE END 4 */

/**

* @brief This function is executed in case of error occurrence.

* @retval None

*/

void Error_Handler(void)

{

/* USER CODE BEGIN Error_Handler_Debug */

/* User can add his own implementation to report the HAL error return state */

__disable_irq();

while (1)

{

}

/* USER CODE END Error_Handler_Debug */

}

#ifdef USE_FULL_ASSERT

/**

* @brief Reports the name of the source file and the source line number

* where the assert_param error has occurred.

* @param file: pointer to the source file name

* @param line: assert_param error line source number

* @retval None

*/

void assert_failed(uint8_t *file, uint32_t line)

{

/* USER CODE BEGIN 6 */

/* User can add his own implementation to report the file name and line number,

ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) */

/* USER CODE END 6 */

}

#endif /* USE_FULL_ASSERT */

七,仿真

测试一下我们的代码

八,

到这功能就算完成啦。要完全看懂这些的也是需要有一定相关知识基础的,这篇主要写的就是怎么用这些函数,至于为什么要这么写或者说为什么要这么用就没有详细说,如果大家想学习的可以去网上搜,相关的资料有很多,有些地方笔者也为大家贴出来了。如果大家需要什么相关资料也可找笔者要哦,祝大家生活愉快。

“且将新火试新茶,诗酒趁年华”

-------------苏轼